

DATOS TÉCNICOS. FORMAS DE SUMINISTRO. ESPECIFICACIONES DE PRODUCTO.

El Nitrógeno es un gas incoloro, inodoro e insípido. Es inerte en estado molecular, excepto en condiciones drásticas.

No es combustible ni mantiene la combustión. Es un gas poco soluble en el agua. Se halla en la atmósfera en una proporción del 78%.

No es un gas tóxico, pero puede producir asfixia por desplazamiento del oxígeno y dilución del aire. Se obtiene industrialmente por destilación fraccionada del aire líquido.

NITRÓGENO	GAS	LIQ.
N.º CAS	0772	7-37-9
N.º ONU	1.066	1.977
N.º CEE (según EINECS)	231	7839

PRINCIPALES APLICACIONES

Atmósferas inertes

- Tratamientos térmicos
- Inertización de tanques de gas combustible
- Industria alimentaria y farmacéutica
- Extinción de incendios
- Mezclas de N₂/Ar para lámparas
- Pruebas de presión en tanques

Purga y trasiego de fluidos

 Industria química y petroquímica. Ingeniería eléctrica y electrónica. Industria alimentaria

Desgasificación y agitación

- Desgasificado de aluminio y magnesio
- Bazuqueo de líquidos

N₂ líquido como medio refrigerante

- Investigación médica y biológica
- Industria de la alimentación
- Molturación
- Ajuste de piezas mecánicas
- Desbarbado de piezas plásticas
- Extrusión perfiles aluminio

Técnicas de la unión (y corte)

- Corte por plasma y por láser de aceros inoxidables y al carbono a alta presión
- Gas plasmágeno y transportador en proyección térmica por plasma y a la llama.

Instrumentación analítica

- Cromatografía de gases
- Absorción atómica (cámara de grafito)
- Analizadores elementales
- Emisión atómica (arco o chispa)
- Métodos térmicos (TDA, TGA)

PROPIEDADES FÍSICAS

Fórmula química	N ₂
Peso molecular	28,013 g/mol
Temperatura ebullición (1 atm)	-195,8 °C
Temperatura crítica	-146,9 ℃
Presión crítica	33,9 bar
Densidad gas (15 °C, 1 atm)	1,185 g/l
Densidad líquido (p.e., 1 atm)	0,808 g/ml
Peso específico (aire=1)	0,967
Solubilidad en agua (15°C, 1 atm)	1,70cm ³ N2/100 cm ³ H20
Calor latente de vaporización (1 atm)	47,44 cal/g

ACOPLAMIENTOS DE VÁLVULAS

Acoplamiento botella	
Tipo	С
Salida gas	W21,7-14h/1"dcha. macho
Material	Latón
Acoplamiento bloque	
Salida gas (CM)	1/8"-11h/1" dcha. macho
(Gasin)	M 35 x 2 dir. macho
Material	Latón
Acoplamiento dewar	
Salida gas	W21,7-14h/1" dcha. macho
Salida líquido	W3/4"-16h/1" dcha. macho
Material	Acero inoxidable
Acoplamiento pallet tank	
Salida líquido	Rosca trapezoidal
	80x10 derecha
Material	Latón

ESPECIFICACIONES DE PUREZA

Calidad (1)	Pureza	H ₂ 0	02	THC	CO+CO ₂	H_2	NO+NO ₂
Nitrógeno Industrial	≥ 99,95%	≤ 15 vpm	≤ 15 vpm	-	-	-	-
Nitrógeno Técnico	≥ 99,998%	≤ 5 vpm	≤ 5 vpm	-	-	-	-
Nitrógeno Medicinal	≥ 99,5%	≤ 67 vpm	≤ 50 vpm	-	-	-	-
Nitrógeno Premier	≥ 99,9992%	≤ 2 vpm	≤ 3 vpm	≤ 0,5 vpm	≤ 2 vpm	-	-
Nitrógeno 5.5	≥ 99,9995%	≤ 1 vpm	≤ 2 vpm	≤ 0,1 vpm	≤ 0,5 vpm	≤ 1 vpm	-
Nitrógeno BIP	≥ 99,9997%	≤ 0,02 vpm	≤ 0,01 vpm	≤ 0,1 vpm	≤ 0,5 vpm	≤ 1 <i>vpm</i>	-
Nitrógeno 6.0	≥ 99,9999%	≤ 0,5 vpm	≤ 0,4 vpm	≤ 0,05 vpm	≤ 0,05 vpm	≤ 0,05 vpm	-
Nitrógeno líquido	≥ 99,995%	≤ 3 vpm	≤ 5 vpm	-	-	-	-
Nitrógeno líquido Food	≥ 99,99%	≤ 4 vpm	≤ 10 vpm	≤ 5 <i>vpm</i>	≤ 10 vpm	-	≤ 10 vpm

⁽¹⁾ Otras calidades a consultar.

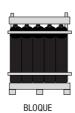
CODIFICACIÓN COLOR BOTELLA

Cuerpo	Negro
Ojiva	Negro
Franja	Negro

TABLA EQUIVALENCIAS

m ³ (15°C, atv)	kg	I	
1	1,185	1,467	
0,844	1	1,238	
0 691	0.808	1	

Volumen líquido a temperatura de ebullición y presión atmosférica. Volumen gas a 15°C y presión atmosférica.


FORMAS DE SUMINISTRO

El Nitrógeno se suministra en estado gaseoso en botellas y bloques de botellas a 200 bar de presión y en fase líquida en recipientes criogénicos móviles: dewars, pallet tanks y depósitos criogénicos estáticos de hasta 50.000 Nm³ de capacidad.

Tipo de envase ⁽¹⁾	Capacidad geométrica (litros)	Diámetro exterior (mm)	Longitud (mm)	Tara (kg)	Capacidad de gas (m³)	Presión de llenado (bar a 15°C)	
X10S	10	140	815	15	1,9	200	
X50S	50	229	1.550	65	9,4	200	
12X50S	600	880x1.20	0x1.620 ⁽²⁾	930	112,8	200	
23X50S	1.150	1.035x1.25	50x1.860 ⁽²⁾	1.650	216,2	200	
D200Z	195	508	1.620	150	112	8-12	
D450Z	450	790	1.620	574	291	20	
D600S	666	1.200x1.10	00x1.440 ⁽²⁾	560	430	8	
de 3.000	3.000	1.600	4.600	3.000	2.400	18	
hasta							
50.000	50.000	2.500	16.000	27.500	40.000	18	

- (1) Otras capacidades a consultar.
- (2) Largo x ancho x alto.

PALLET TANK

DEPÓSITO CRIOGÉNICO ESTÁTICO

Seguridad en la manipulación y almacenaje de envases de gases

Se recomienda observar las normas siguientes para la manipulación y el almacenaje de gases comprimidos, disueltos o licuados con seguridad. Las precauciones adicionales dependen de la categoría del gas en cuestión (inflamable, oxidante, corrosivo o inerte), sus propiedades individuales y los procesos en los que se usan.

GENERAL

- Sólo personas debidamente formadas y con experiencia manipularán los gases.
- Cumplir las normas y los reglamentos locales concernientes al uso y almacenamiento de envases de gases.
- Nunca eliminar o deteriorar las etiquetas de identificación colocadas en los envases por el suministrador.
- Asegurarse de la identidad del gas antes de utilizarlo.
- Comprender y conocer las propiedades y riesgos asociados con cada gas que deba manipularse o usarse, mediante las fichas de seguridad de éstos.
- Por tratarse de materias peligrosas, antes de utilizar los gases, debe existir un plan o procedimiento de emergencia, por si fuera necesario.
- Cuando exista duda sobre el procedimiento correcto de manipulación o uso de algún tipo de gas en particular consultar al suministrador.

USO Y MANIPULACIÓN

 Utilizar los equipos de protección individuales adecuados (guantes, gafas...) para cada tipo de gas.

- Nunca elevar una botella por el tapón o protector si no ha sido expresamente diseñado para ello por el suministrador.
- Utilizar un carrito u otro sistema apropiado para transportar las botellas a cortas distancias.
- Donde exista sospecha de fuga aplicar una solución de agua jabonosa, las burbujas detectarán la fuga.
- El gas contenido en la botella se utilizará siempre a través de un medio de regulación adecuado.
- · Abrir las válvulas de las botellas lentamente.
- Nunca aplicar llamas directas o calentadores eléctricos que aumenten la presión de la botella.
- No trasvasar gases de un envase a otro.
- No usar las botellas como rodillos o soportes.
- Mantener la boca de salida de la válvula limpia y libre de contaminantes (particularmente aceites y suciedad).
- No someter los envases de gases a choques mecánicos anormales que puedan dañar los mismos o la válvula.
- No intentar reparar o modificar envases, sus válvulas o las válvulas de seguridad. Cualquier desperfecto debe ser comunicado al suministrador, identificando el envase.
- Cerrar la válvula cuando la botella no esté en uso, aunque esté conectada al equipo o vacía.
- Colocar los tapones de protección de suministro tan pronto como la botella esté desconectada.

ALMACENAJE

El almacenamiento de botellas y botellones de gases está regulado en las Instrucciones Técnicas Complementarias del Almacenamiento de Productos Químicos.

- Las botellas no se situarán en locales subterráneos y, en general, en donde no exista una ventilación adecuada.
- Almacenar las botellas en lugar seguro y libre de riesgos de incendio, focos de calor o ignición.
- El área de almacenaje de los envases deberá estar correctamente señalizada con avisos del riesgo de los gases almacenados. Sólo se permitirá el acceso al personal autorizado.
- Es necesario prohibir el uso de llamas y fumar en áreas cercanas al almacén de gases.
- Almacenar las botellas en posición vertical, mantener las válvulas cerradas herméticamente y el tapón y/o protector de botellas colocados.
- Almacenar por separado las botellas de gases Ilenas y vacías.
- Separar en los almacenes los envases que contengan distintos gases.
- Examinar periódicamente los envases almacenados para detectar posibles anomalías y fugas.

CARBUROS METÁLICOS, S.A.

Advierte que las presentes recomendaciones se han extraído del EIGA y de la norma I.T.C.-MIE-APQ-005 del Reglamento de Almacenamiento de Productos Químicos. Carburos Metálicos no garantiza que su contenido sea suficiente en todos los casos y situaciones. No se acepta ninguna responsabilidad por las lesiones o daños resultantes de su aplicación. En ningún caso estas recomendaciones excluyen el cumplimiento de la normativa vigente en cada momento.

Para obtener información de seguridad específica sobre el Nitrógeno solicite nuestras Fichas de Datos de Seguridad.